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ABSTRACT 

Rationale:  Umbilical cord-derived mesenchymal stem cells (UC-MSC) are easily accessible and expanded 
in vitro, possess distinct properties, and improve myocardial remodeling and function in experimental 
models of cardiovascular disease. While bone marrow-derived mesenchymal stem cells (BM-MSCs) have 
been previously assessed for their therapeutic potential in individuals with heart failure and reduced ejection 
fraction (HFrEF), no clinical trial has evaluated UC-MSCs in these patients. 

Objective: Evaluate the safety and efficacy of the infusion of UC-MSC in patients with chronic stable 
HFrEF.   

Methods and Results: HFrEF patients under optimal medical treatment were randomized to intravenous 
infusion of allogenic UC-MSCs (Cellistem, Cells for Cells S.A., Santiago, Chile) (1x106 cells/Kg) or 
placebo (n=15 per group). UC-MSCs in vitro, compared to BM-MSCs, displayed a 55-fold increase in the 
expression of Hepatocyte Growth Factor (HGF), known to be involved in myogenesis, cell migration and 
immunoregulation. UC-MSC treated patients presented no adverse events related to the cell infusion and 
none of the patients tested at 0, 15 and 90 days presented alloantibodies to the UC-MSCs (n=7). Only the 
UC-MSC treated group exhibited significant improvements in left ventricular ejection fraction at 3, 6 and 
12 months of follow-up assessed both through transthoracic echocardiography (p=0.0167 versus baseline) 
and cardiac magnetic resonance imaging (p=0.025 versus baseline). Echocardiographic LVEF change from 
baseline to month 12 differed significantly between groups (+7.07±6.22% vs +1.85±5.60, p=0.028). In 
addition, at all follow-up time points, UC-MSCs treated patients displayed improvements of NYHA 
functional class (p=0.0167 versus baseline) and MLHFQ (p<0.05 versus baseline). At study completion, 
groups did not differ in mortality, heart failure admissions, arrhythmias or incident malignancy. 

Conclusions: Intravenous infusion of UC-MSC was safe in this group of patients with stable HFrEF under 
optimal medical treatment. Improvements in left ventricular function, functional status and quality of life 
were observed in patients treated with UC-MSCs. 

Trial registration number: NCT01739777. 
Registry URL: https://clinicaltrials.gov/ct2/show/NCT01739777 
 
Keywords:  
Multipotent stem cells/transplantation; stem cell transplantation/methods; heart failure; cardiomyopathy; 
clinical trial; mesenchymal stem cells.  
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Nonstandard Abbreviations and Acronyms: 
HF  Heart Failure 
HFrEF  Heart Failure with reduced ejection fraction. 
MSC  Mesenchymal stem cells 
BM-MSC Bone marrow-derived mesenchymal stem cells 
UC-MSC Umbilical cord-derived mesenchymal stem cells 
LVEF  Left ventricular ejection fraction 
LVEDV Left ventricular end-diastolic volume 
LVESV Left ventricular end-systolic volume 
NYHA  New York Heart Association 
TNM  Staging of Malignant Tumors (Tumor, Node, Metastasis) 
MLHFQ Minnesota Living with Heart Failure Questionnaire 
KCCQ  Kansas City Cardiomyopathy Questionnaire 
BNP  Brain natriuretic peptide 
HSCRP  High sensitivity C-reactive protein 
VEGF  Vascular endothelial growth factor 
HGF  Hepatocyte growth factor 

INTRODUCTION 

Stem cell therapy has been under evaluation as a treatment for heart failure (HF) with reduced 
ejection fraction (HFrEF) for more than a decade. Experimental studies report improvements in cardiac 
function and regeneration of damaged heart tissue through mechanisms including transdifferentiation, cell 
fusion and paracrine modulation1,2. In human disease, recent reviews suggest that stem cell therapy is safe 
and associated with moderate clinical benefits in survival, left ventricular function and quality of life of 
HFrEF patients3–6. Clinical trials in patients with chronic ischemic or non-ischemic disease have assessed 
a range of cellular products and delivery routes. These include autologous or allogenic bone-marrow 
mononuclear cells and mesenchymal stem cells (MSC), administered by intramyocardial injections, 
percutaneous intracoronary infusion and exceptionally peripheral intravenous infusion3,4,6. However, after 
decades of basic and clinical research, overall benefit and the best cell source and route of administration 
remain unsettled.     

MSCs are multipotent cells with low immunogenic potential that can be isolated from adult tissues 
including bone marrow, adipose tissue, and umbilical cord among other sources. The niche of origin 
represents an essential factor when evaluating biological differences between cell types, since MSC 
properties can be highly influenced by microenvironmental changes1,7. Most experimental and clinical 
studies have utilized bone-marrow derived MSC (BM-MSC), nonetheless these cells present disadvantages 
for clinical application, including an invasive harvesting procedure and a decreased proliferation and 
differentiation potential related to donor age and comorbidity8. In contrast, umbilical cord MSCs (UC-
MSC) are easily attainable and expanded in vitro, have less cellular aging, and are devoid of ethical 
concerns. Preclinical studies have demonstrated that UC-MSC can express cardiac-specific molecules 
(troponin-I, connexin-43), differentiate into cardiomyocyte-like and endothelial cells in vitro, and also exert 
paracrine effects that enhance vascular regeneration and cardiomyocyte protection. Such actions might 
underly the improvement in cardiac function observed in animal models of chronic ischemic 
cardiomyopathy and dilated cardiomyopathy in response to UC-MSCs9–14. The aim of this prospective, 
randomized, double blinded placebo–controlled trial was to evaluate the safety and efficacy of a well 
characterized source of UC-MSCs administered intravenously in patients with chronic HFrEF.  
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METHODS 

Study design and patient population.  
The RIMECARD trial was a phase 1/2, randomized, double-blind, placebo-controlled clinical trial. The 
study was conducted at Clínica Santa Maria and Clínica Dávila, Chile. Participants were referred from these 
private healthcare centers or public hospitals, and randomized between December 2012 and June 2014. The 
experimental design was approved by the ethics committee at both participant health centers and the Chilean 
Metropolitan Health Service. Before enrolment, all patients agreed to participate and signed an informed 
consent approved by the institutional review board. This study was registered in Clinicaltrials.gov 
(NCT01739777).  
 
Inclusion criteria were: 1) 18–75 years of age. 2) Chronic HFrEF with New York Heart Association 
(NYHA) classification I-III and left ventricular ejection fraction (LVEF) ≤40% at echocardiographic 
assessment. 3) All patients had to be under optimal medical management for at least 3 months prior to 
randomization, which encompassed class I guideline-recommended therapies (angiotensin converting 
enzyme inhibitor or angiotensin receptor blocker, beta blocker and mineralocorticoid receptor blocker) at 
maximal tolerable dosages. Ivabradine and sacubtril/valsartan were not included given their recent 
introduction in our country. Exclusion criteria were: 1) End-stage HFrEF defined as patients with 
ACCF/AHA stage D (candidates for specialized interventions including heart transplantation and 
mechanical assistance) or terminal heart failure (advanced heart failure with poor response to all forms of 
treatment, frequent hospitalizations and life expectancy <6 months). 2) Recurrent myocardial ischemia 
defined as any type of acute coronary syndrome 3 months prior to enrollment. 3) Uncontrolled ventricular 
tachycardia defined by sustained ventricular tachycardia, including electrical storm and/or incessant 
ventricular tachycardia with no response to antiarrhythmic medication. 4) Malignant disease with life 
expectancy <1 year according to TNM classification. 5) Manifest ventricular asynchrony defined by 
intraventricular asynchrony at qualitative echocardiographic assessment (ondulating systolic movement 
beginning at the interventricular septum and extending to other left ventricular segments, with late 
activation of LV lateral wall). Patients with LBBB without manifest ventricular asynchrony were allowed 
to enroll. 6) Hematologic disease: anemia (hemoglobin ≤9.5g/dl); leukopenia (<4000/μL); 
thrombocytopenia (<75000/uL); myeloproliferative disorders, myelodysplastic syndrome, acute or chronic 
leukemia and plasma cell dyscrasias (multiple myeloma, amyloidosis). 7) Recent cerebrovascular disease 
(<3 months). 8) Serum creatinine >2.26mg/dL (>200µmol/L). 9) Atrial fibrillation without optimal heart 
rate control in the last 3 months. Every patient assessed for eligibility was subject to coronary angiography 
and exercise stress test to guarantee the stability of their coronary disease, and rule out signs of ischemia 
prior to inclusion into the protocol. Hence the patients with ischemic cardiomyopathy had predominantly 
scar. 
 
Eligible patients were enrolled in a 1:1 randomization to intravenous infusion of UC-MSCs or placebo. The 
randomization list was computer generated by a person unrelated to the study. All patients were assessed 
at baseline and at the pre-established follow-up points of 3, 6 and 12 months. These evaluations consisted 
of a clinical assessment for adverse events and NYHA functional classification; Minnesota Living with 
Heart Failure Questionnaire (MLHFQ) and Kansas City Cardiomyopathy Questionnaire (KCCQ); 
laboratory testing including complete blood count, liver and renal function tests, brain natriuretic peptide 
(BNP) and high sensitivity C-reactive protein (HSCRP); resting ECG, signal averaged ECG, 24-hour ECG 
Holter monitoring; transthoracic echocardiography, cardiac magnetic resonance (CMR) and 
cardiopulmonary exercise test. Technical specifications regarding quality of life questionnaires, 
echocardiography, CMR and cardiopulmonary exercise tests are provided below. Clinical researchers, 
study nurses and patients were blinded to treatment allocation. 
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Preparation, characterization and infusion of UC-MSC. 
UC-MSC treatments were processed in an ISO 9001:2015 certified GMP type Laboratory (Cells for Cells, 
Santiago, Chile), under good manufacturing practice (GMP) conditions according to the Food and Drug 
Administration (FDA) Guidance for industry (Current good tissue practice (CGTP) and additional 
requirements for manufacturers of human cells, tissues, and cellular and tissue-based products (HCT/Ps). 
Umbilical cords were obtained from full-term human placentas by caesarean section after informed consent, 
from healthy donors, and were aseptically stored in sterile phosphate-buffered saline (PBS) supplemented 
with 100 U/ml penicillin and 100 µg/mL streptomycin (Gibco, Gran Island, USA). Within 3 hours of birth, 
the umbilical cord was sectioned and washed with PBS and antibiotics. Wharton’s jelly was dissected into 
small fragments (1–2 mm2 pieces), seeded in 100 mm culture plates and maintained in Minimum Essential 
Medium Eagle (MEM) Alpha Modifications (Alfa-MEM) high glucose (Gibco, Gran Island, USA) -
supplemented with 10% heat-inactivated fetal bovine serum (FBS; Gibco, USA), 1% 
penicillin/streptomycin and 2 mM L-glutamine (L-G) (Gibco, Gran Island, USA). At 48 hours, non-
adherent cells were removed, washed with PBS and culture medium was replaced with fresh medium every 
3 days. When the cell culture reached 70-80% confluence, cells were detached by treatment with TrypLE 
TM Express (Gibco, Gran Island, USA) and reseeded at a density of 2,500 cells per cm2 into 500 cm2 flasks 
(Nunc, Denmark). At passage 3, UC-MSC were characterized according to the International Society for 
Cellular Therapy Guidelines15, harvested and cryopreserved in Profreeze (Lonza, Walkersville, USA) 
following the manufacturer’s instruction. In vitro tests (described in the online supplement) were performed 
to further characterize the UC-MSC used in the trial, including cell size and doubling time, senescence 
markers, cardiomyogenic differentiation potential, paracrine and immunomodulatory activity, and 
migration capacity of UC-MSCs as compared with BM-MSCs. BM-MSCs were obtained from a 18 year 
old healthy male undergoing surgery due to hip trauma, and 2 iliac crest samples that were from a female 
and a male healthy donor, aged respectively 23 and 30 yrs, purchased from Lonza. None had cardiovascular 
diseases.  

According to the amount of cells required in each case, cryopreserved vials were thawed and expanded 
until passage 5-6 using Alfa-MEM supplemented with 10% AB plasma. HLA typing for these cells was 
assessed by PCR for HLA Class I (A, B, C) and Class II (DP, DQ, DR). The release criteria for clinical use 
of UC-MSCs included the absence of: macroscopic clumps, contamination by pathogenic microorganisms 
(bacteria, mycoplasma, syphilis, HBV, HCV, HIV, CMV and fungi) or endotoxin (≤0.5 EU/mL) and a 
viability ˃80%, with an identity and purity pattern characterized by positivity (≥95%) of CD73, CD90 and 
CD105, and negative expression (≤2%) of CD45, CD34, CD14 and HLA-DR. A total of 1x106 UC-
MSC/kilogram of body weight were re-suspended in a final volume of 100 ml of AB plasma. The placebo 
group received 100 ml of autologous plasma. Patients received premedication with intravenous 
hydrocortisone 100 mg and chlorphenamine 10 mg, complying the local protocol for prevention of allergic 
and non-hemolytic transfusion reactions. After 30 minutes they were infused with UC-MSCs or placebo at 
2 ml/min via peripheral vein, under noninvasive monitoring of vital signs.  

Study endpoints. 
The primary safety endpoints encompassed immediate adverse events after intravenous infusion of UC-
MSC or placebo; incidence of overall death, major cardiovascular events (defined by the combined outcome 
of cardiovascular deaths, hospital admission due to decompensated HF, non-fatal myocardial infarction), 
and other adverse events including stroke, sustained ventricular arrhythmias and incident malignancy. The 
humoral immune response to infused allogeneic UC-MSCs was tested in a group of 12 patients (7 treated 
with UC-MSC, 5 receiving placebo) at days 0, 15 and 90 of infusion using Luminex 200 (Kashi Clinical 
Laboratories Inc. Portland, OR).  
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The primary efficacy endpoint was change in LVEF in echocardiography16. Secondary efficacy endpoints 
included changes in left ventricular end-systolic volume (LVESV) and end-diastolic volume (LVEDV) at 
echocardiography; LVEF, LVESV and LVEDV in CMR; NYHA functional classification; quality of life 
questionnaires overall scores; maximum peak oxygen consumption (peak VO2) and ventilatory efficiency 
(VE/VCO2 slope) assessed through cardiopulmonary exercise test; BNP and HSCRP. 

Transthoracic echocardiography. 
Transthoracic echocardiography was performed by 2 experienced cardiologists, blind from treatment 
allocation, from both participating centers. Studies were performed in Vivid 7 Dimension Cardiovascular 
Ultrasound System (General Electric Healthcare, USA). LVEF was measured through modified Simpson 
biplane method, LVESV and LVEDV were measured at parasternal long axis in four and two chamber. 
Chamber quantifications, diastolic dysfunction and global longitudinal strain were measured according to 
recommendations of the American Society of Echocardiography17,18. 
 
Cardiac Magnetic Resonance. 
Cardiac magnetic resonance (CMR) studies were performed on a 1.5 Tesla magnetic resonance system 
using cardiac phased-array SENSE coil with 5 channels (Philips Achieva, Netherlands). All scans were 
obtained by a single operator and at a single institution (Clinica Davila, Chile). The imaging protocol 
included axial, coronal and sagittal scout images to localize the heart; afterwards balanced SSFP cine ECG-
gated sequence in four-chamber, three-chamber, long axis and short axis planes were performed for LV 
functional assessment. Images were transferred to the workstation (Philips Extended MR Workspace, 
2.6.3.5, Netherlands) for post-processing. Global LV function was quantified by radiologists blinded to 
treatment allocation, using Segment v1.9 software (Medviso AB, Sweden)19. Endocardial and epicardial 
contours were drawn on short-axis end-diastolic and end-systolic images by radiologists, blinded to 
treatment allocation and affiliated to an independent institution (Hospital Clinico Universidad de Chile, 
Chile). Papillary muscles and endocardial trabeculations were included into LV volume. A total of 8 to 12 
short-axis segments were needed to encompass the entire left ventricle.  
  
Cardiopulmonary exercise test. 
Standardized symptom-limited cardiopulmonary test exercise protocols with treadmill or cycle ergometry 
were performed, based on availability of the technique al each healthcare center of recruitment. Gas 
exchange measurements analyzed for each breathing cycle were performed using metabolic charts. Exercise 
capacity variables including Peak VO2, VE/VCO2, METS, oxygen consumption at anaerobic threshold, 
peak respiratory exchange ratio and exercise time were recorded. 
 
Quality of life questionnaires. 
Patients answered validated translations of MLHFQ and KCCQ. MLHFQ is a 21-item self-administered 
questionnaire assessing the patients' perception of the effects of CHF on physical, socioeconomic and 
psychological aspects of their life20. Scores range between 0 and 105, higher scores indicate worst quality 
of life20. KCCQ is a 23-item self-administered questionnaire addressing specific health domains pertaining 
to heart failure: physical limitation, symptoms, quality of life, social limitation, symptom stability, and self-
efficacy21. The first 4 domains combine into a clinical summary score. Scores range from 0 to 100, higher 
scores point to lower symptom burden and better quality of life21.  
 
Statistical analysis. 
Continuous data are expressed as mean ± SD, and categorical data as absolute number. Categorical data 
was compared using Pearson's chi-squared test. Continuous data was assessed by Shapiro–Wilk test for 
normality. Comparison between groups at baseline was assessed through unpaired t-test or Mann-Whitney 
U-test according to normality. Intra-individual comparison of continuous variables at baseline with those 
at follow-up was performed with paired t-test or Wilcoxon rank sum test according to normality. Statistical 
significance was assumed at a value of p<0.05. For comparisons of various post-treatment evaluations 
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versus baseline, Bonferroni alpha correction was performed and statistical significance was assumed at a 
value of p<0.0167. CMR studies were additionally analyzed through a mixed effect maximum likelihood 
regression. In vitro data are expressed as mean ± SEM, and were compared using one-way analysis of 
variance followed by Bonferroni correction. A value of p<0.05 was considered statistically significant. 
Analyses were performed with IBM SPSS Statistics 20.0 (IBM Corp, USA) and STATA 12.0 (StataCorp, 
USA). 
 
 
 
RESULTS 

 
Characterization of the UC-MSCs. 
 
 UC-MSC and BM-MSC were grown and characterized for surface markers as described above. 
Their capacity to differentiate to mesodermal lineages was confirmed under specific osteogenic, 
chondrogenic and adipogenic differentiation conditions (Online Figure I). Cell size, doubling time and 
senescence markers can be seen in the online Figure II. 
 
Cardiac differentiation potential. 
 
 Treatment with 5-AZA for 25 days induced cardiomyogenic differentiation of UC-MSCs, revealed 
by the expression of specific markers including transcription factors involved in myogenesis (NKx2.5, 
GATA-4, MEF2C) and other genes (MYH7B, GJA1, TNNT2). The expression of all 6 genes was induced 
in both cell sources, though BM-MSCs exhibited higher mRNA levels as shown by RT-PCR (p˂0.001) 
(Figure 1A). Conexin-43 staining also had greater expression in BM-MSCs than in UC-MSCs 
(24.33±1.84% versus 17.42±1.43%), (p=0.018). In contrast, Troponin expression seemed increased in UC-
MSCs (23.47±7.94% versus 9.06±2.61% for BM-MSCs), but did not reach significance (p=0.166). (Figure 
1B). Beating was not observed in MSCs after induction with 5-AZA. 
 
Paracrine profile. 
 
  UC-MSCs showed a higher TGF-β3 gene expression in comparison with BM-MSCs (p<0.001) but 
VEGF expression levels in comparison with BM-MSCs was not significantly different (Figure 1C). Of 
note, UC-MSCs showed a 55 fold higher expression of HGF in comparison with BM-MSCs (p>0.0001) 
(Figure 1C), that in some cases showed undetected levels of HGF.  Comparative quantification of IDO 
activity, IL6, TGF-β1, PGE2, HLA-G and PDL-1 at basal and stimulated condition of UC-MSCs and BM-
MSCs can be seen at online Figure III.  
 
Immunomodulatory effects. 
 
 The immunosuppressive properties of UC-MSCs were assessed by evaluating their effect on the 
proliferative response of peripheral blood mononuclear cells (PBMCs) following PHA stimulation in vitro. 
UC-MSCs exhibited a similar inhibitory effect on T cell proliferation compared to BM‐MSCs at the 1:10 
ratio, inhibition percentages were 21.53%±3.85% and 23.96±4.50 for UC-MSCs and BM-MSCs, with 
respect to PHA-induced proliferation in the absence of MSCs (p<0.005 versus control) (Figure 2A). T 
helper 1, T helper 2 and cytotoxic T cells exhibited a tendency to decrease their proliferation after co-
cultured with UC-MSCs or BM-MSCs (p>0.05). No effect of the MSC co-cultures was observed on 
regulatory T cell proliferation (Figure. 2B).  
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Migration profile in response to HFrEF patient’s serum. 
  
 The percentage of migrating cells was significantly higher in UC-MSCs compared with BM-
MSCs in response to HFrEF patient’s serum (41.18±6.53 vs 29.67±8.35; p<0.01) (Figure 3).  
 
Patient population. 

 

From December 2012 to June 2014, 65 patients were assessed for eligibility, 30 patients underwent 
randomization (n=15 per group) (Figure 4). Baseline characteristics of the UC-MSC and placebo patients 
did not differ in terms of demographic variables, cardiovascular risk factors, NYHA class and 
electrocardiography (Table 1). Ischemic cardiomyopathy was the predominant etiology of HFrEF (21 
patients, 70%). There were no differences between groups concerning therapeutic agents that modify 
cardiac remodeling. No patient had cardiac implantable electronic devices. One patient from each group 
had left bundle branch block, although none presented manifest ventricular asynchrony at baseline. Patients 
treated with placebo presented higher BNP levels and 25% greater LVEDV at baseline (p<0.05).  
 
Safety. 
  

There were no acute adverse events associated to the infusion of allogenic UC-MSC or placebo. 
None of the tested individuals (7 treated with UC-MSC and 5 receiving placebo) developed alloantigen 
directed antibodies post infusion. Of note, one female patient with baseline reactivity to 52 different HLA 
specificities prior to UC-MSC, lost reactivity to 16 of these specificities at day 90. Furthermore, since we 
typed the infused cells, we could detect that only 21% of specificities not expressed on the infused MSCs 
disappeared, as opposed to 100% of those present on the infused MSCs (p=0.004). Our data not only 
confirm the absence of humoral immune reaction to UC-MSCs, but also suggest that MSCs preferentially 
suppress reactivity to their own HLA molecules.  

 
Clinically relevant events throughout the 12 months of follow-up are shown in Table 2. The 

deceased patient from the placebo group had an acute myocardial infarction at 5 months of follow-up. The 
patient from the UC-MSC presented an acute lymphocytic leukemia at 5 months from intravenous infusion 
of UC-MSC, lacking clinical and laboratory elements suggestive of leukemia at baseline and at 3 months 
of follow-up. One patient from the placebo group developed a malignant melanoma. Concerning major 
cardiovascular events, three patients from the placebo group and one from the UC-MSC had 
hospitalizations due to decompensated heart failure, only one patient experienced an acute coronary 
syndrome in the placebo group. None of the patients had an acute ischemic stroke. No new-onset 
supraventricular arrhythmias, sustained ventricular arrhythmias, atrioventricular blocks or bundle branch 
blocks were diagnosed during follow-up, and none were observed at ECG Holter monitoring. There was an 
increase in the amount of premature ventricular complexes at 24-hour ECG monitoring in the placebo group 
at follow-up, albeit without changes in mean Lown classification (Online Table I). No noteworthy 
variations were observed in time or frequency domains at follow-up. No thoracic ectopic tissue formation 
was observed in CMR at completion of this study. No significant abnormalities were seen in complete blood 
counts, renal and liver function during monitoring points.   

 
Cardiac imaging. 

Echocardiographic parameters evaluated at baseline and follow-up are depicted in Table 3. 
Compared to baseline, there were improvements in LVEF in the UC-MSC treated group that began at 3 
months of follow-up (+3.71±5.01%, p=0.010), and continued at 6 months (+5.43±4.99%, p=0.001) and 12 
months (+7.07±6.22%, p=0.001). There were no changes in left ventricular volumes. The placebo group 
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showed no major differences in these variables. The change of LVEF from baseline to month 12 differed 
significantly for both groups (+7.07±6.22% vs +1.85±5.60%, p=0.028).  

CMR measurements are shown in Table 3. Patients treated with intravenous infusion of UC-MSCs 
presented an increase of LVEF (p=0.0003) and LVEDV (p=0.012) (Figure 5). The most significant 
improvements of LVEF was at 6 months of follow-up (+4.67±4.51; p=0.005). There was an increase in 
LVEDV in the UC-MSC group at 12 months (p=0.033). We observed no changes in LVEF or left 
ventricular volumes in the placebo group (n=13). One patient from the placebo group withdrew consent for 
CMR. 

Functional status, quality of life and clinical biomarkers. 

Results are summarized in Table 3. There were substantial improvements in NYHA class in patients 
treated with UC-MSC, starting at 3 months (-0.54±0.56; p=0.011), which remained at 12 months follow-
up (-0.62±0.46; p=0.003). Only the UC-MSC group experienced improvements in MLHFQ from baseline 
to all follow-up points (p<0.05). Both groups experienced an initial improvement of KCCQ clinical 
summary at 3 and 6 months of follow-up, with persistence of improvement at trial completion only in the 
UC-MSC treated group (p=0.014). Patients treated with UC-MSC exhibited an improvement in VE/VCO2 
at 12 months (-1.89±3.19; p=0.023 versus baseline), while no differences were observed in peak VO2. We 
found no differences in other exercise capacity variables including METS, oxygen consumption at 
anaerobic threshold, peak respiratory exchange ratio and exercise time after cell therapy (Online Table II). 
We observed a slight decrease in BNP levels in the group treated with UC-MSC at 3 and 12 months of 
follow-up.  

 

 

DISCUSSION 

RIMECARD is the first randomized, double-blind, placebo controlled clinical trial with 
intravenous infusion of allogenic UC-MSC in patients with chronic HFrEF. Intravenous infusions of UC-
MSC are safe in this population and suggests benefits in surrogate clinical endpoints including LVEF, 
functional status and quality of life in HFrEF patients receiving this form of systemic stem cell therapy.   

MSC-based therapies have been considered overall safe procedures. A recent systematic review of 
36 prospective clinical trials for several clinical conditions, including myocardial infarction and chronic 
cardiomyopathy, did not detect an association between intravascular infusions of MSCs and the risk of 
acute infusion toxicity, organ system complications, infection, death or malignancy in treated patients22. 
Systematic reviews in HF population actually describe an association between stem cell therapy and a 
reduction of mortality and major cardiovascular events, albeit most of the analyzed studies used 
intramyocardial injection or percutaneous intracoronary infusion of bone marrow mononuclear cells4,5. 
There is limited experience regarding intravenous administration of MSCs in patients with cardiovascular 
diseases, mainly due to safety concerns regarding the entrapment of donor cells in pulmonary circulation 
and apprehensions on their therapeutic efficacy in a context of low cardiac engraftment. A phase 2 study 
by Hare et al, supports the safety of intravenous administration of allogenic BM-MSC (up to 5x106 cells/kg) 
in acute myocardial infarction23. At 6 months of follow-up, MSC-treated patients had similar adverse event 
rates, a trend towards decreased in hospitalization rate and a decrease in arrhythmic events versus placebo23. 
Additionally, there were benefits in pulmonary function at 6 months and lack of evidence of pulmonary 
ectopic formations in CMR studies performed at 12 months23. A recent cross-over phase 2 clinical trial by 
Butler et al, assessed the safety of the intravenous administration of ischemia tolerant allogenic BM-MSC 
versus placebo in patients with non-ischemic cardiomyopathy24. At 90 days of follow-up, this trial reported 
no differences in death, hospitalizations and serious adverse events between groups24. Considering both 
studies and our results, the intravenous delivery of UC-MSCs appears safe in HFrEF population. 
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Intravenous UC-MSC was not associated with a decrease in the incidence of ventricular arrhythmias, unlike 
the study by Hare et al; a difference that could be due to several reasons including different patient 
populations, MSC dosages and monitoring time points.  

Our trial displayed improvements in LVEF in patients receiving intravenous UC-MSC treatment, 
albeit no noteworthy reductions in LVESV or LVEDV were observed. Randomized clinical trials with 
autologous and allogenic MSC have reported differing results regarding evolution of left ventricular systolic 
function and volumes24–32. In the dose-escalation POSEIDON trial, patients with ischemic HF that received 
transendocardial injections of autologous and allogenic BM-MSC showed non-clinically relevant 
improvement on LVEF within 13 months (mean increase +1.96%, p=0.11, n=27)25. In the later 
POSEIDON-DCM trial, a phase I/II randomized clinical trial in patients with non-ischemic dilated 
cardiomyopathy comparing transendocardial injections of allogenic versus autologous BM-MSC (100x106 
cells), an increase in LVEF was described for patients receiving allogenic BM-MSC at 12 months (+8.0%; 
p=0.004; n=18), while patients with autologous BM-MSC exhibited non-significant changes (+5.4%; 
p=0.116; n=16); there were no changes in ventricular volumes for both groups30.  In the C-CURE trial, the 
group of ischemic HFrEF patients treated with a combination of autologous BM-MSC exposed to a cytokine 
cocktail for cardiogenic differentiation (mean dose 733 x106 cells, n=32), presented noteworthy 
improvements in LVEF (+6.8%; p<0.0001) and LVESV (-16ml; p<0.0001) at 6 months follow-up26. In the 
TAC-HFT, ischemic HF patients receiving intra-myocardial injections of autologous BM-MSC (100-
200x106 cells, n=19) showed non-significant trends towards improvement in LVEF, LVESV and LVEDV 
at 12 months27. In the MSC-HF trial, ischemic HF patients receiving intra-myocardial injections of 
autologous BM-MSC (mean dose 77.5x106 cells, n=40) exhibited an increase in LVEF (+5.0%; p<0.0001), 
and a decrease in LVESV (-7.6ml; p=0.001), while no changes in LVEDV were observed at 6 months 
follow-up28. A phase 2 dose-escalation study in patients with HFrEF performed by Perin et al, assessing 
transendocardial injections of immunoselected allogenic BM-MSC (25, 75 and 150 x106 cells, n=15 per 
group), revealed no differences in LVEF at 12 months of follow-up, although the 150 x106 MSC group had 
a significant reduction in LVESV and LVEDV at 6 months and a non-significant decrease of both 
ventricular volumes at 12 months32. In a randomized trial by Zhao et al in patients with decompensated 
HFrEF, individuals receiving intramyocardial injections of allogenic UC-MSC (n=30) presented 
improvements in LVEF (+19.0±6.8%; p<0.01) and LVESV (-13.14±10.62ml; p<0.05) at 6 months29. In the 
recent trial by Butler et al, HFrEF patients receiving ischemia-tolerant allogenic BM-MSC (1.5x106 
cells/kg, n=10) experienced a significant increase in LVEF (+2.31%; p=0.02) and reductions in LVEDV (-
17.86ml; p=0.04) and LVESV (-16.60ml; p=0.02) at 3 months24. Remarkably, the ixCELL-DCM trial 
reported a reduction in the combined outcome of all-cause mortality and cardiovascular admissions (RR 
0.63, 95%CI 0.42–0.97; p=0.0344), in patients with symptomatic HFrEF receiving transendocardial 
injections of ixmyelocel-T (n=58), a multicellular therapy produced from autologous bone marrow 
mononuclear cells -with selective expansion of MSC and macrophages,- versus placebo (n=51)31. These 
patients receiving ixmyelocel-T experienced no change in LVEF or ventricular volumes31. The CHART-1 
trial, showed neutral results regarding composite and individual outcomes, including all-cause mortality, 
worsening heart failure events, and surrogate endpoints (LVEF, LVESV, LVEDV, MLHFQ), in HFrEF 
patients with ischemic cardiomyopathy receiving intramyocardial injections of cardiopoietic cells (MSC; 
n=120) versus sham procedures (n=151)33. Exploratory analysis from CHART-1 suggest a benefit in treated 
individuals with baseline LVEDV >200 ml; unlike our trial, in which most treated patients had lower 
baseline LVEDV. A recent retrospective cohort of 2166 outpatients with HF by Kalogeropoulos et al, 
concluded that patients who experienced recovery of LVEF (defined as current LVEF>40% but any 
previously documented LVEF≤40% by transthoracic echocardiography), had fewer all-cause mortality (RR 
0.71; 95% CI, 0.55-0.91), cardiovascular hospitalizations (RR 0.50; 95% CI, 0.35-0.71) and HF-related 
hospitalization (RR 0.48; 95% CI, 0.30-0.76) compared to patients with HFrEF or HF with preserved 
LVEF. In the POSEIDON-DCM trial, such recovery of LVEF was achieved by 46.7% of patients receiving 
allogenic BM-MSC and 22.2% of patients treated with autologous BM-MSC30, whereas in our study this 
occurred in 50% (7/14) of UC-MSC treated individuals versus 7.1% (1/14) of the placebo group at month 
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12 (p=0.0365). Albeit ours is a small series, only the UC-MSC treated group exhibited significant 
improvements in left ventricular ejection fraction at 3, 6 and 12 months of follow-up, both by transthoracic 
echocardiography (p=0.0167 versus baseline) and cardiac magnetic resonance imaging (p=0.025 versus 
baseline). This suggests our patients might experience benefits regarding major clinical outcomes, although 
this observation requires verification in a larger phase 3 clinical trial. 

Improvements in NYHA and quality of life questionnaires were observed in the UC-MSC group 
also, in agreement with results from other MSC-based therapy clinical trials in HF24–28,30. Interestingly at 
12 months of the POSEIDON-DCM trial, the groups receiving allogenic BM-MSC had 66.7% of patients 
with improved NYHA functional class and a substantial decrease in mean MLHFQ scores, while patients 
receiving autologous BM-MSC exposed only a trend towards improvement30. We appreciated a low 
concordance between improvement on NYHA classification and performance at cardiopulmonary exercise 
test, a phenomena previously described34. Cardiopulmonary exercise tests have been seldom performed in 
cell therapy trials, and with wide-ranging results. Regarding MSC therapies, to our knowledge only the 
POSEIDON and TAC-HFT assessed peak VO2, describing no changes for this outcome in patients treated 
with autologous BM-MSC25,27. We did not observe changes in this variable, although we identified a modest 
improvement in ventilatory efficiency in patients treated with UC-MSC at 12 months. Recent evidence 
suggests VE/VCO2 is an excellent marker of severity and prognosis of HF, better than peak VO2 at 
reflecting the complex interplay of pulmonary, cardiac, and peripheral manifestations in HF population35,36. 
The lack of major benefits in cardiopulmonary performance can be attributed to several factors. Honold et 
al, in a sub-analysis of patients with poor, moderate and conserved cardiopulmonary test results prior to 
cell therapy documented that patients with lowest initial exercise capacity showed largest improvements in 
peak VO2 and VE/VCO2 after intracoronary stem cell infusion37. Our patients had slight alterations at 
baseline, therefore limited benefits could be anticipated.  

A range of mechanisms have been proposed to explain the clinical benefit observed in HF patients 
treated with MSC, including reductions in myocardial cell apoptosis, modulation of inflammation, 
myocardial fibrosis, neovascularization and increased cell differentiation13. Incorporation of MSCs into 
tissues is regulated by multiple processes including cell recruitment, migration and adhesion38. The higher 
migration of UC-MSCs in response to HFrEF patient serum, herein described, is compatible with the notion 
that this cell type might sense biological cues that are contributory to their therapeutic effect by systemic 
delivery.  

In our study, UC-MSCs and BM-MSCs expressed cardiomyogenic differentiation potential, 
although BM-MSCs presented a more favorable profile of transcription factors related to cardiac 
differentiation. Despite early reports describing cell engraftment and differentiation in animal models of 
HF, later studies evidence retention rates below 0.5% after 4 days of intramyocardial injections of BM-
MSC39, which seem insufficient to account for the magnitude of clinical benefit. Mounting evidence rather 
suggests the reparative actions of MSCs rely on paracrine modulation1,2. The comparative results of the 
paracrine factors assessed in this work, point to a significant advantage of UC-MSCs over BM-MSCs. The 
most striking difference was the prominent expression of HGF in UC-MSC from all tested donors, while 
BM-MSCs showed low to undetectable levels. Remarkably, several studies in chronic ischemic or non-
ischemic HF animal models, have reported that gene transfection of HGF promotes angiogenesis and 
decreases fibrosis and apoptosis, attenuating cardiac remodeling and improving myocardial remodeling, 
perfusion and contractile function40–44. Furthermore, MSCs share several biological properties with 
endothelial cells, enabling them to contribute to angiogenesis. Preclinical data from several groups 
including ours, suggest UC-MSC can enhance angiogenesis by promoting the formation of capillary-like 
structures in vitro or increasing capillary density in vivo, through upregulation of various proangiogenic 
factors and chemokines including VEGF, angiopoietin and MCP-1 among others12,13,45,46. Liu et al have 
described that UC-MSC intracoronary and intravenous infusion was associated with a promotion of 
angiogenesis through paracrine modulation and perhaps endothelial cell differentiation, an augmented 
myocardial perfusion and enhancement of collateral vessel development in a porcine model of a chronic 
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myocardial ischemia14. In the same study, animals treated with UC-MSC had improved LVEF and a 
reduction of myocardial fibrosis and apoptosis14. Moreover, allogenic MSCs can improve endothelial 
function and vascular reactivity through stimulation of endothelial progenitor cell mobilization in HF 
patients30,47. Interestingly, the PROMETHEUS trial assessed the impact of intramyocardial injections of 
autologous BM-MSC into the akinetic non-revascularized myocardial segments of patients with chronic 
ischemic cardiomyopathy, reporting an improvement in myocardial perfusion and functional recovery, and 
subsequently an improvement in global left ventricular function48.  

Limitations. 

The assessment of differences in major cardiovascular outcomes and surrogate efficacy outcomes 
was underpowered due to the small number of participants from each patient group. Post hoc analysis 
considering echocardiographic assessment of LVEF at 12 months revealed an estimated power of 71%. 
This discouraged further analysis to discriminate responders from non-responders to therapy or differences 
regarding cardiomyopathy substrate. Differences in left ventricular volumes at baseline, in spite of 
randomization, could bias efficacy results in favor of UC-MSC. However the sub-analysis of CHART-1 is 
reassuring in that most benefit in response to treatment occurred precisely in patients with higher baseline 
LVEDV, suggesting such bias might not be in favor of our UC-MSC group. We could not perform 
myocardial perfusion and fibrosis measurements due to non-contrast CMR imaging and software restraints, 
nonetheless these had not been considered as secondary endpoints of the study.   

Conclusions. 

Intravenous infusion of UC-MSC was feasible and safe in this group of patients with HFrEF under 
otherwise optimal medical therapy. Allogenic UC-MSC treatment induced no humoral immune response 
in tested individuals. The intervention resulted in a significant improvement in left ventricular function, 
functional status and quality of life. These findings suggest UC-MSC could have an impact on clinical 
outcomes, supporting further testing through large clinical trials.  
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FIGURE LEGENDS 

Figure 1. UC-MSCs and BM-MSCs displayed different cardiac differentiation potential and 
paracrine factors profile. Cardiac differentiation was induced in UC-MSCs and BM-MSCs by cultured 
with 5-aza 10uM during 25 days. Cardiac differentiation potential was evaluated through mRNA relative 
expression of cardiac gene (NKX2-5, GATA-4, MEF2C, MYH7b, GJA1 and TNNT2) by real time PCR 
with B2M as a housekeeping gene (A) and by detection of cardiac proteins using indirect 
immunofluorescence staining troponin and connexin-43 (B), the respective graphs show the quantification 
of positive cells in the each staining. TGFβ3 expression was quantitated by RT-qPCR (C). VEGF and HGF 
levels were evaluated by ELISA assay (C). Data shown in the graphs are the mean±SEM of at least three 
individual experiments. *p<0.05, *** p˂ 0.001, UC-MSCs compared to BM-MSCs. + p<0.05, ++ p<0.001 
UC-MSC-4 compared to UC-MSCs-1, 2 and 3.  

Figure 2. UC-MSCs and BM-MSCs display the same suppressive capacities to inhibit 
proinflammatory T‐cells. PHA-activated hPBMC obtained from dilated cardiomyopathy patients with 
heart failure and reduced ejection fraction (HFrEF), labeled with CFSE were co-culture with or without 
MSCs at a 1:10 ratio (MSCs:hPBMC). A) T-cell proliferation was evaluated by the reduction in CFSE 
intensity at 72 hours after culture, the graphs in the left is a representative CFSE proliferation panel (light 
color histogram represent activated PBMCs and dark color histogram to activated PBMC co-cultured with 
MSCs). B) Th1, Th2, CD8 and regulatory T cells subsets analysis from co-culture of PBMC and MSCs. 
Results are represented as mean±SEM of at least 3 independent experiments using at least 3 different donors 
for hPBMC (healthy donor and DCM patient), UC-MSCs and BM-MSCs. *** p<0.001 UC-MSCs or BM-
MSCs with respect to PHA.  

Figure 3. UC-MSCs possess a superior migration capacity compared with BM-MSCs. Migration 
capacity of MSCs was evaluated by transwell assay in response to serum from HfrEF patients after 16h. 
The pictures show the representative staining with violet crystal and the left graph the quantification of % 
of migrated cells under the different conditions. Data shown in the graphs are the mean±SEM of at least 
three serum donor, UC-MSCs and BM-MSCs. *p<0.05 UC-MSCs vs BM-MSCs.  

Figure 4. Study Flow Chart. 

Figure 5. Changes in cardiac magnetic resonance imaging measurements from baseline to 12 months 
post treatment in studied groups. A. Left ventricular ejection fraction (LVEF). B. Left ventricular end-
diastolic volume (LVEDV). C. Left ventricular end-systolic volume (LVESV). Continuous line represents 
UC-MSC group (n=14 per protocol). Dashed line represents placebo group (n=13 per protocol; withdrawal 
of consent from 1 patient). Statistical analysis are based on mixed effect maximum likelihood regression 
between baseline and follow-up measures for each group and variability between groups. 
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NOVELTY AND SIGNIFICANCE 

What Is Known? 

 Intracoronary and intramyocardial cell therapy, mainly with allogenic bone marrow mesenchymal
stromal cells (BM-MSC), has shown to be safe and potentially effective in heart failure patients,
even if low levels of cell engraftment are expected, suggesting a paracrine mechanism of action.

 Umbilical cord mesenchymal stromal cells (UC-MSC) are of easier access and in vitro expansion,
and exhibit superior angiogenic and paracrine effects compared with BM-MSC, but their systemic
administration in human heart failure patients has not been tested.

What Information Does This Article Contribute? 
 This is the first double blind randomized placebo controlled trial of the intravenous administration

of umbilical cord derived mesenchymal stromal cells (UC-MSC´s), confirming this a feasible and 
safe treatment in patients with ischemic and non-ischemic heart failure. 

 The UC-MSCs employed in this trial exhibited superior clonogenicity, migration and paracrine
capacities in-vitro and less senescence when compared with bone marrow derived MSCs (BM-
MSCs).

 UC-MSC treatment was associated with significant improvements in ventricular systolic function,
NYHA functional classification and quality of life indexes.

Cell therapy has been evaluated in cardiovascular diseases for more than a decade without reaching 
consensus regarding optimal cell source or method of application. Trials using BM-MSCs administered 
through invasive local implantation have suggested positive results, and have indicated that allogenic cell 
sources may be superior to autologous MSCs in aged patient population, usually with comorbid disease. 
Herein, we  report the first randomized placebo controlled clinical trial using UC-MSCs intravenously in 
patients with heart failure and reduced ejection fraction of both ischemic and non-ischemic etiology. The 
results show that systemic administration of UC-MSCs is safe in these patients and point to significant 
improvements in functional capacity, quality of life and left ventricular ejection fraction. Moreover, we 
show this highly accessible and allogenic cell source of younger origin than BM-MCSs, displayed biologic 
and paracrine advantages, and exerted long-term (12 months) clinical effects via intravenous 
administration. This route of administration simplifies therapy, decreases costs of the procedure, allows 
exploration of repeated dosages, and should be tested further with UC-MSCs in larger trials assessing long-
term clinical endpoints. 
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Table 1. Baseline Characteristics 
Characteristics Placebo (n = 15) UC-MSC (n = 15) p  
Age 57.20±11.64 57.33±10.05 NS
Gender (male %) 14  (93.3) 12  (80.0) NS
Ischemic cardiomyopathy (%) 11  (73.3) 10  (66.7) NS
Arterial hypertension (%) 8  (53.3) 7  (46.7) NS
Diabetes (%) 7  (46.7) 5  (33.3) NS
Dyslipidaemia (%) 6  (40.0) 7  (46.7) NS
Smoking (%) 4  (26.7) 7  (46.7) NS
Obesity (%) 8  (53.3) 6  (40.0) NS
BMI 29.52±4.00 29.12±2.88 NS
Medication 

Aspirin (%) 9  (60.0) 14  (93.3) 0.031
Clopidogrel (%) 1    (6.7) 3  (20.0) NS
Acenocumarol (%) 9  (60.0) 2  (13.3) 0.008
ACEI or ARB (%) 15   (100) 15   (100) NS
Βeta blockers (%) 15   (100) 15   (100) NS
Spironolactone (%) 13  (86.7) 13  (86.7) NS
Other vasodilators 2  (13.3) 1    (6.7) NS
Digitalis (%) 1    (6.7) 4  (26.7) NS
Other antiarrhythmic (%) 2  (13.3) 1    (6.7)
Diuretics (%) 10  (66.7) 9  (60.0) NS
Metformin (%) 7  (46.7) 4  (26.7) NS
Other oral antidiabetics (%) 2  (13.3) 0    (0.0) NS
Insulin (%) 1    (6.7) 2  (13.3) NS
Statins (%) 12  (80.0) 11  (73.3) NS

NYHA class 1.67±0.49 2.03±0.61 NS
Laboratory 

GFR (mL/min/1.73 m2) 76.18 ±24.36 81.91±15.69 NS
Haemoglobin (mg/dl) 14.33±1.13 14.29±1.35 NS
C-reactive protein (mg/L) 1.65±1.41 1.84±1.42 NS
Brain natriuretic peptide (pg/mL) 767.45±481.02 451.61±495.14 0.015

Electrocardiogram 
Sinus rhythm (%) 14  (93.3) 14  (93.3) NS
LBBB (%) 1   (6.7) 1    (6.7) NS
LAFB (%) 3  (20.0) 5  (33.3) NS
RBBB (%) 4  (26.7) 2  (13.3) NS

Echocardiography 
LVEF (%) 31.49±4.71 33.00±6.18 NS
LVESV (mL) 136.53±35.32 108.93±38.65 NS
LVEDV (mL) 202.07±45.79 161.80±53.13 0.034
Restrictive diastolic dysfunction (%) 3  (20.0) 1    (6.7) NS
Moderate mitral regurgitation (%) 2  (13.3) 1    (6.7) NS

BMI: Body mass index. ACEI: Angiotensin converting enzyme inhibitors. ARB: Angiotensin II Receptor 
Blockers. NYHA: New York Heart Association. GFR: Glomerular filtration rate according to CKD-EPI 
formula. LBBB: Left bundle branch block. LAFB: Left anterior fascicular block. RBBB: Right bundle 
branch block. LVEF: Left ventricular ejection fraction. LVESV: Left ventricular end-systolic volume. 
LVEDV: Left ventricular end-diastolic volume. NS: p>0.05 between groups. 
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Table 2. Incidence of clinically relevant events at 12 months of follow-up 
Placebo (n = 15) UC-MSC (n = 15) p  

Overall Deaths 1 1 NS
 Cardiovascular deaths 1 0 NS
Hospitalizations  4 1 NS
 Heart Failure 3 1 NS
 Myocardial infarction 1 0 NS
Incident malignancy 1 1 NS
Nonsustained ventricular tachycardia 7 7 NS

NS: p>0.05 between groups. 
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Table 3. Primary and secondary efficacy outcomes at baseline and follow-up points 
Variable Group n Baseline 3 months 6 months 12 months 
TTE LVEF Placebo 14 31.53±4.89 33.00±7.24 32.79±7.76 33.39±7.38

UC-MSC 14 33.50±6.09 37.21±6.80‡ 38.93±5.74‡ 40.57±8.19‡
TTE LVESV Placebo 14 134.3±35.5 126.4±39.8 128.4±43.4 131.1±42.0

UC-MSC 14 110.1±37.6 99.1±39.0 104.4±42.8 100.5±36.8
TTE LVEDV Placebo 14 199.2±46.1 188.8±42.1† 189.1±45.4 191.7±43.5

UC-MSC 14 168.1±48.5 161.6±43.9 167.0±56.6 161.4±48.6
CMR LVEF Placebo 13 29.62±6.53 28.80±6.55 30.66±7.65 31.31±7.10

UC-MSC 14 32.64±8.42 35.93±9.83† 38.41±12.00‡ 37.43±10.44†
CMR LVESV Placebo 13 175.2±56.8 170.9±39.8 167.8±50.5 179.0±52.6

UC-MSC 14 130.2±42.8* 130.8±62.1 121.3±46.2 133.9±62.1
CMR 
LVEDV 

Placebo 13 245.9±60.1 207.3±75.4 241.0±56.0 257.8±54.1 

UC-MSC 14 185.5±50.0* 197.7±67.2 190.8±48.2 210.0±67.2†
NYHA Placebo 14 1.71±0.48 1.50±0.62 1.43±0.55† 1.46±0.63

UC-MSC 14 2.07±0.62 1.57±0.61‡ 1.50±0.59‡ 1.43±0.63‡
MLHFQ Placebo 14 37.42±22.22 29.04±18.39 26.86±22.93 27.07±20.36

UC-MSC 14 53.21±30.25 30.50±23.76† 27.07±21.54‡ 31.21±26.66†
KCCQ–CS Placebo 14 69.92±21.24 78.08±15.94† 78.64±18.46† 75.46±22.43

UC-MSC 14 57.48±25.33 73.22±22.89† 74.99±20.70† 72.82±24.10‡
VO2 peak Placebo 14 17.56±5.04 18.14±5.32 17.85±4.92 18.16±4.70

UC-MSC 14 18.11±4.67 18.52±4.28 18.59±4.84 17.88±4.11
VE/VCO2  Placebo 14 34.42±5.12 34.19±6.01 33.61±6.28 33.42±6.74

UC-MSC 14 34.06±8.53 32.11±5.99 32.41±5.18 32.17±7.41†
BNP Placebo 14 731±477 654±468 681±499 892±801

UC-MSC 14 474±507* 355±443‡ 452±586 394±535†
HSCRP Placebo 14 1.63±1.46 1.78±1.86 1.92±1.85 1.67±1.09

UC-MSC 14 1.68±1.33 3.15±3.60 5.15±15.94 2.15±2.58
TTE: Transthoracic Echocardiogram. CMR: Cardiac Magnetic Resonance. LVEF: Left ventricular ejection 
fraction (%). LVESV: Left ventricular end-systolic volume (ml). LVEDV: Left ventricular end-diastolic 
volume (ml). NYHA: New York Heart Association. MLHFQ: Minnesota Living with Heart Failure 
Questionnaire. KCCQ-CS: Kansas City Cardiomyopathy Questionnaire Clinical Summary. VO2 peak: 
Maximal oxygen consumption (ml/Kg/min). VE/VCO2: Minute ventilation to carbon dioxide production 
ratio. BNP: Brain natriuretic peptide (pg/ml). HSCRP: High sensitivity C-reactive protein (mg/L). *p<0.05 
versus placebo. †p<0.05 versus baseline. ‡p<0.0167 versus baseline. 
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FIGURE  1
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FIGURE  2
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ONLINE SUPPLEMENT 

EXPANDED METHODS 

Automated cell counting, size and characterization: 

 Prior to the release of each batch of cell-therapy, preparations were assessed using a 
Countess™ (Invitrogen, USA) automated cell counter for viability, cell count and size 
measurements using trypan blue staining for viability combined with advanced image analysis. 
After setting the cell mode parameters for MSC cell type (circularity, maximum and minimum cell 
size), UC-MSC cell samples were mixed with trypan blue (1:1) and loaded onto the cell counting 
chamber slide. Each sample data was stored and then analyzed. 

Doubling time 

 Data were collected from each cell culture process performed under GMP conditions. 
Doubling time was calculated based on initial cell number, culture time (hours) and final number of 
cells harvested according to the described formula (Roth V. 2006 Doubling Time Computing, 
available from: http://www.doubling-time.com/compute.php): Doubling Time = duration x log (2) / 
[log (final concentration) −log (initial concentration)]. The range of analyzed data was the following: 

Cell seeding density: 1400 – 4900 cells/cm2 
Initial cell number seeded: 1.4 – 62 million 
Culture days: 3-8 days 
Harvested cell number: 8.5 – 336 millions 

Senescence-associated beta-galactosidase assay 

 UC-MSC and BM-MSC were cultured and harvested under standard conditions. To 
perform the assay using Senescent cells histochemical staining kit (sigma #CS0030), 10.000 cells 
per well were seeded in 24-well plates. After 5hrs, the staining mixture was added for detection of 
SA-β-galactosidase and incubated overnight at 37°C following the manufacturer’s instructions. 
Positive stained cells were counted and the percentage of cells expressing SA-β-galactosidase 
(senescent cells) calculated over the total cell number of each sample.  

Cardiomyogenic differentiation  

 For cardiomyogenic differentiation, cells in passage 3 were seeded at 60% of confluence 
and cultured in Dulbecco's modified Eagle's medium (DMEM) high glucose (Gibco, USA) 
supplemented with 5% heat-inactivated FBS (Gibco, USA) with 1% penicillin/streptomycin and 2 
mM L-G and 10 uM 5-azacytidine (Sigma-Aldrich, USA). The media was removed and replaced for 
fresh media every 3 days. At day 20 relative expression of NKX2-5, GATA-4, MEF2C, MYH7b, 
GJA1 and TNNT2 were measured. RNA extraction was performed using the RNeasy mini kit 
(Qiagen, USA) and complementary DNA was synthesized in a 20 μl reaction mixture using 
SuperScript III First-Strand Synthesis for RT-PCR (Invitrogen, USA). RT-qPCR was performed 
using SYBR Green Reagents (QPCR Master Mix, Agilent Technologies). All primer sets were 
previously screened for efficiency and their sequences were:  B2M (F:5´ 
TCAGGTTTACTCACGTCATCC 3´, R:5’ ACACGGCAGGCATACTCATC 3´), GATA-4 (F: 
5´AAACGGAAGCCCAAGAACCT 3´, R: 5´ ACTGAGAACGTCTGGGACAC 3´), NKX2-5 (F: 5´ 
TGTCCACGCTGCATGGTATC 3´, R:5´GATCACTCATTGCACGCTGC3´), MEF2C (F: 5´ 
CCAACTTCGAGATGCCAGTCT 3´, R:5´ GTCGATGTGTTACACCAGGAG 3´), MYH7B (F:5' 
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GCAATAAAAGGGGTAGCAGAGC 3', R:5'GACTCCCCAAGTTCACTCACAT3'), TNNT2 (F:5' 
CTGGCCATTGACCACCTGAA 3', R:5'GCTGCTTGAACTTCTCCTGC3'), GJA1 (F:5' 
TCTCTCATGTGCGCTTCTGG 3', R:5' TGACACCATCAGTTTGGGCA 3'). Data were expressed 
as relative mRNA level of specific gene using the 2-∆∆CT method and normalized with the Beta-2 
microglobulin (B2M) housekeeping gene. Additionally, differentiation was confirmed by indirect 
immunofluorescence using Anti-Cardiac Troponin I antibody (ab47003, Abcam), Anti-Connexin 
43/GJA1 (ab47368, Abcam) and Goat Anti-Rabbit IgG FITC (ab6717, Abcam). Cells were both 
fixed with 4% paraformaldehyde (PFA) for 10 minutes at room temperature and permeabilized with 
0.3% Triton X-100 for 10 minutes. Nonspecific binding was blocked by PBS plus 5% serum 
albumin bovine serum (BSA) (Sigma) for 60 minutes. Primary antibodies were incubated overnight 
at 4°C and fluorescein isothiocyanate (FITC)-conjugated secondary antibodies for 2 hours at room 
temperature. Nuclei were counterstained with 4´, 6´diamino-2-phenylindole (Sigma) for 1 minute. 
Images were obtained with a NIKON ECLIPSE TE2000-fluorescence microscopy and Nikon Sight 
DSU2 camera.  

Measurements of Paracrine Factors 

 To compare the secretion levels of growth factors between BM MSCs and UC MSCs, 
3X104 cells were plated in serum-free medium in 6-well plates. After 24 hours of incubation, the 
conditioned medium was collected, and the secreted levels of vascular endothelial growth factor 
(VEGF) and hepatocyte growth factor (HGF) were measured using the DuoSet ELISA 
Development System (R&D Systems, Minneapolis,MN . In addition, relative expression of TGF 1 
was measured using the RNeasy mini kit (Qiagen, USA) to RNA extraction and complementary 
DNA was synthesized in a 20 μl reaction mixture using SuperScript III First-Strand Synthesis for 
RT-PCR (Invitrogen, USA). RT-qPCR was performed using SYBR Green Reagents (QPCR 
Master Mix, Agilent Technologies). All primer sets were previously screened for efficiency and 
their sequences were:  B2M (F:5´ TCAGGTTTACTCACGTCATCC 3´, R:5’ 
ACACGGCAGGCATACTCATC 3´), TGF 1 F 5 ACAATTCCTGGCGATACCTCAGCA3 , 
F 5 TGCAGTGTGTTATCCCTGCTGTCA3 .  

IDO activity 

 UC-MSCs and BM-MSCs cells were stimulated with 20 ng/mL of IFN  and 10 ng/mL of IL-
1β or with 100 ng/mL of IFN  during 48 hours in Dulbecco’s modified Eagle’s medium (DMEM) 
supplemented with 2% fetal bovine serum, 2 mM L-glutamine, 1% penicillin/streptomycin  (all 
reagents from Gibco, Gran Island, USA) and 100 ug/mL of L-tryptophan (Sigma-Aldrich, St Louis, 
MO,USA). IDO enzyme activity was measured determining the kynurenine content in the cell 
supernatant as previously reported1,2. 

IL6, TGF-β,  PGE2, PDL-1  and HLA-G quantification 

 IL6, TGF-β and PGE2 were quantified in the supernatants of BM-MSCs and UC-MSCs 
stimulated for 48 hours in the absence and presence of 20 ng/mL IFN-   and 10 ng/ml IL-1β in 
Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 2% fetal bovine serum, 2 mM L-
glutamine, 1% penicillin/streptomycin (all reagents from Gibco, Gran Island, USA), using an 
enzyme- linked immunosorbent assay (ELISA) from R&D Systems (R&D Systems, Minneapolis, 
MN,USA) following the manufacturer instructions. PDL-1 and HLA-G detection was performed 
using flow cytometry (FACSCanto™, BD Bioscience). BM-MSCs and UC-MSCs were collected 
and stained with specific antibodies (BD Pharmingen, San Jose, CA, USA) according to previously 
published staining procedures3. Briefly, The collected cells were resuspended in 100 l of FACS 
buffer (PBS 1X, 0.2% BSA, 0.01% sodium azide) and incubated for 20 minutes at 4°C with the 
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appropriate fluorescently labeled monoclonal antibody directed against lymphocyte surface 
markers (BD Biosciences, CA, USA), washed and resuspended in FACS buffer, and analyzed by 
the FACS Canto II cytometer using the FACS Diva software (BD Biosciences, CA, USA). The 
viability was determined using LIVE/DEAD®Fixable dead cell stain kit (Invitrogen, CA, USA) 
according to the manufacturer's protocol. The data acquired was analyzed using the FlowJo 
soſtware (Tree Star, Ashland, OR, USA). 

T-Cell Subset Proliferation Assays  

 The proliferation of different T-cell subsets from 4 HFrEF patients included in this trial was 
performed in vitro to evaluate the immunomodulatory effect of UC-MSCs and BM-MSCs. Human 
peripheral blood mononuclear cells PBMCs were isolated by Ficoll-Paque Plus (GE Healthcare, 
Amersham, UK) (1.077 g/ml) density-gradient according to manufacturer’s instruction. PBMCs 
were stained with carboxyfluorescein succinimidyl ester (CFSE; Life Technologies, Carlsbad, CA) 
following the manufacturer’s protocol, and co-cultured with MSCs in 96-well plates at a 1:10 ratio 
(MSCs:hPBMC)  in Roswell Park Memorial Institute (RPMI) medium (ThermoFisher, USA) 
supplemented with 10% FBS, 1% L-G, 1% nonessential amino acids (Sigma-Aldrich, USA), 
100mM sodium pyruvate (Sigma, USA), 25 mMb-mercaptoethanol (Gibco, NY), and 15mg/ml 
phytohemagglutinin (PHA) (Sigma, USA). After 72 hours, PBMC were stimulated for 4 hours with 
50 ng/ml phorbolmyristate acetate (PMA) (Sigma Aldrich) and 1μg/ml ionomycin (Sigma Aldrich) in 
the presence of Brefeldin A (Biolegend, San Diego, Ca, USA). For surface staining, cells were 
incubated with antibodies against human CD4, CD8, CD3 and CD25 (BD Biosciences, USA) in the 
dark at 4°C for 30 min. Intracellular staining was performed using the BD Cytofix/Cytoperm 
solution, according to the manufacturer’s protocol with antibodies against human IL-17, IL4 and 
IFNγ (eBioscience, USA). For transcriptional factor evaluation, we assessed FoxP3 expression 
with staining buffer and specific antibodies (eBioscience, USA) according to the manufacturer’s 
protocol. Cells were acquired using a FACS Canto II Flow cytometer (BD Biosciences) and 
analyzed with the FlowJo software (Tristar, Stanford) for phenotype and proliferation, calculated by 
the decrease in CFSE fluorescence.  

Migration capacity  

 Cell migration assays were performed with the Transwell two-chamber cell culture method 
(Corning, Cambridge, MA) with an 8 μm pore polycarbonate membrane. The uppermost side of 
the Transwell membrane was coated with 0.1% gelatin in PBS (Sigma-Aldrich, St. Louis, MO) for 2 
h at 37 . UC-MSCs or BM-MSCs were seeded at a density of 15.000 cells per 100 μl of DMEM 
1% P/S, 0.1%FBS in the upper chamber of the Transwell apparatus. Cells were allowed to migrate 
toward medium (500 μl) in the lower chamber containing DMEM alone or supplemented with 5% of 
serum isolated from the HFrEF patients. The Transwell system was incubated for 16h at 37  in a 
humidified atmosphere containing 5% CO2. After incubation, non-migratory cells were carefully 
removed from upper face of the Transwell insert with a cotton swab. The attached cells remaining 
on the Transwell insert were fixed with 70% methanol and stained with 1% crystal violet in 20% 
methanol for 1 h. After washing, the stained cells that migrated from the upper to the lower side of 
the membrane were counted under an inverted bright-field microscope at 20X magnification. The 
number of migrated cells was expressed as the percent change from the control value (DMEM 
alone). Each experiment was performed in biological and experimental triplicate.  
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SUPPLEMENTAL RESULTS 

Cellular size 

Parameters defined for the MSC setting of the Countess™ (Invitrogen) automated cell counter 
included control of circularity and maximum-minimum cell size (applied gate 10um - 28um). The 
analysis of 26 therapy releases resulted in an average size measurement of UC-MSC´s of 17.1  
3.5 m. 

Doubling time 

The doubling time (DT) data were collected from each of the cell culture passage performed under 
GMP conditions. The assessment of 50 samples resulted in an average DT of 32.6  8.8 hours. 

Senescence-associated beta-galactosidase assay 

UC-MSC and BM-MSC senescence according to the expression of SA-β-galactosidase was 
evaluated under standard culture conditions normalized for passage and culture duration. UC-
MSC showed around 2 fold less senescent cells than BM-MSC´s (Online Figure II). 

Quantification of IDO activity, IL6, TGF-β1, PGE2 and PDL-1 at basal and stimulated 
condition 

The expression of these mediators involved in the regenerative and suppressive effects of MSCs 
was evaluated for both cell sources (BM or UC-MSCs) in baseline conditions and after 
proinflammatory stimulus with IFN  and IL-1β at optimal conditions (20 and 10 ng/ml respectively). 
UC-MSCs expressed similar levels of PDL-1, HLA-G as well as IDO activity compared to BM-
MSCs under the different culture conditions. Furthermore, both MSC sources responded to the 
IFN  + IL-1β stimulated conditions by an increased protein expression levels of IL-6, TGF-β1 and 
PGE2 (Online Figure III). Of interest, UC-MSCs expressed higher constitutive levels of PGE2 and 
TGF-β1, a molecule known for the induction of T regulatory (Treg) CD4+ cells and inhibition of NK 
function.  
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ONLINE FIGURE LEGENDS 

Online Figure I. UC- MSCs expressed all the common MSC markers and demonstrate capacity to 
differentiate into chondrogenic, osteogenic and adipogenic lineage. (A): UC-MSCs were stained 
with labeled monoclonal antibodies against known MSC surface markers (blue) and their 
respective isotypes (red); the cells were analyzed by flow cytometry. All UC-MSCs were positive 
for CD105, CD73, CD90, CD44, CD146, CD49a and HLA-ABC but negative for CD14, CD34, 
CD31, CD45, and HLADR. (B) Representative images of UC-MSC differentiation after specific 
inductions and staining: adipocytes (Oil Red O), osteocytes (alizarin red), and chondrocytes 
(safranin O). Scale bars = 200 mm. All data are presented as mean ± SEM (n=3) of a minimum of 
4 donors. Abbreviations: MSCs, mesenchymal stem cells; UC, umbilical cord. 

Online Figure II. Size, doubling time and senescence of UC-MSCs. A. Cell preparations were 
counted using an automated cell counter assessing viability, cell counting and size measurements 
using the trypan blue method of dead-cell staining combined with advanced image analysis. The 
parameters for MSC setting included setting of the circularity and maximum and minimum cell size 
(applied gate 10um - 28um). The analysis of 26 therapy releases resulted in the average size 
measurement of 17.1±3.5 μM. B. The doubling time (DT) of UC-MSC. The data were collected 
from each cell culture process performed under GMP conditions. Doubling time was calculated 
based on initial cell number, culture time (hours) and final number of cells harvested. The 
assessment of 50 samples resulted in the doubling time of 32.6± 8.8 hours. C.  Senescence-
associated beta-galactosidase. UC-MSC and BM-MSC (n=3) were cultured and harvested under 
standard conditions. Positive stained cells for SA-β-galactosidase were counted and the 
percentage of cells expressing SA-β-galactosidase calculated over the total cell number of each 
sample analyzed. Under normalized culture condition (number of passages, and duration of 
culture), UC-MSC showed around 2 folds less senescent cells. 

Online Figure III. BM and UC-MSCs immunoregulatory response to cytokine activation and 
expression of immunosuppressive molecules. A) IDO activity measured by kynurenine 
production. B) PDL-1 and HLA-G expression levels determined by flow cytometry (left), 
representative cytometry plots (right). C) PGE2, TGFβ1 and IL6 expression levels measured by 
ELISA. IDO activity were quantified in the supernatants of MSCs cultured in the absence (control 
group) or presence of 20 ng/ml IFN  and 10ng/ml IL1β or 100 ng/ml of IFN . PDL-1, PGE2, TGF-
β1 and IL6 expression levels were quantified on MSCs cultured in the absence (control group) or 
presence of 20 ng/ml IFN  and 10ng/ml IL1β. Results are represented as mean±SEM of three 
independent experiments using each time three different UC-MSCs and BM-MSC donors. *, 
p<.05; **, p<.01; ***, p<.005 compared to MSCs control group without proinflammatory cytokines 
treatment. #, p<.05; ##, p<.01, UC-MSCs compared to BM-MSCs. Abbreviations: UC-MSCs, 
umbilical cord-derived mesenchymal stem cells; BM-MSCs, bone marrow-derived mesenchymal 
stem cells; IL, interleukin; IFN, interferon; IDO, indoleamine 2,3 dioxygenase; PDL-1, programmed 
cell death-ligand; HLA-G, histocompatibility antigen, class I, G; MFI, mean fluorescence intensity.  
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Online TABLES 
 

Online Table I. Electrophysiological assessment of arrhythmogenic potential.  

Variable Group N Baseline 3 months 6 months 12 months 
QTC Placebo 14 453.9±32.1 442.1±30.6 446.6±36.4 449.4±29.7 
 UC-MSC 14 437.5±43.5 449.8±27.3 449.5±36.3 440.9±30.0 
Lown class Placebo 14 2.57±1.50 2.36±1.50 1.85±1.46 2.14±1.46 
 UC-MSC 14 1.43±1.16* 1.71±1.27 1.57±1.22 1.50±1.09 
PVC Placebo 14 550±1090  904±1535‡ 1526±3657  1875±3052† 
 UC-MSC 14 385±970 394±669 1294±1955 967±2100 
LP § Placebo 9 0.67±0.86   0.78±0.83 0.22±0.67 0.44±0.88 
 UC-MSC 10 1.20±1.13 0.70±0.95 0.80±0.92 0.30±0.67† 
SDNN Placebo 14 35.35±17.53 36.96±20.21 39.43±31.19 43.94±27.89 
 UC-MSC 14 52.89±52.06 42.29±47.91‡ 49.43±60.84 43.25±49.52 
RMSSD Placebo 14 28.10±21.50 34.06±23.48 30.21±20.13 34.06±24.03 
 UC-MSC 14 62.85±99.90 43.89±71.04 58.58±88.72 65.70±97.69 
HRVTI Placebo 14 11.76±4.86 9.54±3.82† 12.12±6.78 11.34±5.18 
 UC-MSC 14 11.97±6.53 11.04±7.08 10.77±8.92 20.45±36.22 
LF Placebo 14 103.3±47.6 89.51±41.17 97.26±78.28  95.40±54.58 
 UC-MSC 14 111.2±34.3 111.0±46.6 108.65±64.08 99.12±36.51 
HF Placebo 14 104.7±52.5 126.0±80.6 95.6±60.3 109.2±78.7 
 UC-MSC 14 160.9±88.4 138.7±87.1 167.9±103.2 149.1±99.6 
LF/HF ratio Placebo 14 1.32±1.12 2.04±3.75 2.09±3.77 1.32±1.16 
 UC-MSC 14 1.24±1.52 1.51±1.86 1.03±0.82 1.04±0.77 

QTC: Corrected QT segment according to Bazett’s formula. PVC: Total number of premature 
ventricular contractions in 24-hour ECG Holter test. LP: Number of late potentials criteria 
according to signal averaged ECG. SDNN: Standard deviation of NN intervals. RMSSD: Root 
mean square of successive differences. HRVTI: Heart Rate Variability Triangular Index. LF: Low 
Frequency ranges. HF: High Frequency ranges. *p<0.05 versus placebo. †p<0.05 versus 
baseline. ‡p<0.0167 versus baseline. § Patients with bundle branch block or atrial fibrillation were 
excluded from this analysis.   
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Online Table II. Additional parameters of exercise capacity assessed at cardiopulmonary 
test. 

Variable Group N Baseline 3 months 6 months 12 months 
METS Placebo 14 5.01±1.43 4.76±1.47 5.10±1.40 5.35±1.46 
 UC-MSC 14 5.17±1.34 5.40±1.13 5.31±1.38 5.11±1.18 
VT Placebo 14 12.42±3.29 12.44±4.00 12.45±2.88 13.52±3.02 
 UC-MSC 14 12.32±3.43 13.60±5.36 13.30±5.99 13.52±5.49 
RER Placebo 14 1.22±0.20 1.13±0.09† 1.16±0.09 1.13±0.10 
 UC-MSC 14 1.13±0.10 1,13±0.09 1.09±0.08 1.09±0.09 
Exercise time (min) Placebo 14 6:41±1:24 6:17±1:52 6:18±1:35 7:03±2:11 

UC-MSC 14 6:51±2:40 6:35±2:05 6:48±2:23 6:46±2:15 

VT: VO2 at anaerobic threshold (ml/Kg/min). RER; peak respiratory exchange ratio. *p<0.05 
versus placebo. †p<0.05 versus baseline. 
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